
Available online at www.sciencedirect.com

Procedia Engineering 00 (2015) 000–000
www.elsevier.com/locate/procedia

A Two-Level Multithreaded Delaunay Kernel
Jean-François Remaclea,c, Vincent Bertranda, Christophe Geuzaineb

aUniversité catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Bâtiment Euler, Avenue Georges Lemaı̂tre 4,
1348 Louvain-la-Neuve, Belgium

bUniversité de Liège, Department of Electrical Engineering and Computer Science, Montefiore Institute B28, Grande Traverse 10, 4000 Liège,
Belgium

cDepartment of Computational and Applied Mathematics, Rice University

Abstract

This paper presents a fine grain parallel version of the 3D Delaunay Kernel procedure using the OpenMP (Open Multi-Processing)
API. A set S = {p1, . . . , pn} of n points is taken as input. S is initially sorted along a space-filling curve so that two points that are
close in the insertion order are also close geometrically. The sorted set of point is then divided into M subsets S i, 1 ≤ i ≤ M of
equal size n/M. The multithreaded version of the Delaunay kernel inserts M points at a time in the triangulation. OpenMP barriers
provide the required synchronization that is needed after each multiple insertion in order to avoid data races. This simple approach
exhibits two standard problems of parallel computing: load imbalance and parallel overheads. Those two issues are addressed
using a two-level version of the multithreaded Delaunay kernel. Tests show that triangulations of about a billion tetrahedra can be
generated on a 32 core machine (Intel Xeon E5-4610 v2 @ 2.30GHz with with 128 GB of memory) in less that 3 minutes of wall
clock time, with a speedup of 18 compared to the single-threaded implementation.
c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).

Keywords: Delaunay triangulation, parallel computing, OpenMP

1. Introduction

In the last decades, the size of the finite element meshes that are used in industry for scientific computing has
grown considerably due to the availability of massively parallel computers. It is nowadays not uncommon to generate
meshes that have over 100 million tetrahedra. From a user’s perspective, however, generating a mesh of a complex
domain usually involves the generation of several intermediary meshes that are progressively enhanced in order to
fulfill some adequate design requirements. Todays best 3D meshing algorithms are able to generate about five million
tetrahedra per minute on one single core [11]. Each iteration in the meshing process thus takes long minutes and users
eventually spend a significant portion of their time waiting for the mesh generator to provide outputs.

Computation platforms are increasingly based on multicore architectures with a large common shared memory
but relatively low performance individual computing cores. The performance of today’s mesh generation procedures,
based on serial kernels, is thus largely stalling, and may actually degrade in the future.

Parallel mesh generation procedures have been developed for several years. Up to ten years ago, the great majority
of parallel meshing algorithms worked at a coarse grain level (see [6] for an exhaustive survey). In such coarse grain
algorithms, the 3D domain is first partitioned into subdomains; the internal 2D boundaries between the subdomains
are then meshed in order to ensure the compatibility of the 3D meshes in adjacent subdomains; and serial meshing
procedures are finally applied at the subdomain level [5,8,16]. The focus of these parallel algorithms is mostly about
mesh size and not so much about fast meshing: indeed, generating very large meshes cannot be done on one single

∗ Jean-Franois Remacle.

1877-7058 c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).

2 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000

CPU and it is thus very important to distribute the meshing generation process in order to have access to sufficient
memory. Multicore platforms offer the advantage of low latency communications through shared memory, leading
to the possibility of fine-grain parallelism in the meshing kernels. Recently, CGAL [3] developers have proposed a
fine-grained multithreaded version of the Delaunay triangulation in 3D based on locks [3]. Different locking strategies
have been analyzed, with typical speedups of 5 with 8 computing cores, but at the cost of a fairly complex algorithmic
implementation.

This paper is essentially a preliminary work in multithreading the meshing process of Gmsh [12]. The overall aim
is similar to CGAL’s, i.e., to increase the speed of the central piece of the mesh generator through a fine-grained par-
allelization of the Delaunay kernel. The main difference is that we focus here on the simplicity of the implementation,
using the OpenMP (Open Multi-Processing) Application Programming Interface (API).

The paper is organized as follows. In Section §2, we give the main ingredients that allow us to build an efficient
3D Delaunay triangulator:

1. The points are initially separated in groups of increasing sizes. Then, points are sorted within each group using
a Hilbert space-filling curve [1,13].

2. While this sorting process is done, the insertion of the points has a linear complexity in most of the situations.
3. Geometrical predicates are carefully crafted in order both to ensure the robustness of the triangulation and good

computational efficiency.

With those ingredients, we demonstrate that our algorithm compares well with the best serial implementations avail-
able: a set of one million points in R3 is tetrahedralized in less that 11 seconds of wall clock time on one single core
of an Intel Xeon E5-4610 v2 @ 2.30GHz.

In §3 a fine grain-parallelization of this Delaunay kernel is then proposed. The Hilbert curve passing through all
the points is snipped into M equal parts and each of the M computational threads take care of one part of the curve.
M points are inserted at once, in parallel. The procedure is implemented using OpenMP, the Open Multi-Processing
API. A significant speedup is observed at that stage: the time for tetrahedralizing one million points can be reduced
by a factor 4.6 on 8 cores. Yet, using more cores, the parallel performance decreases: 32 cores are required to obtain
a speedup of 9.33.

In §3, we show that the degradation of the parallel efficiency of this simple approach when the number of cores
increases is predictable: the overhead of OpenMP constructs is magnified and the load gets less and less well balanced
when the number of cores increases.

Mitigation solutions for these two problems are presented in n §4, using a two-level extension of the multithreaded
Delaunay kernel, where M2 > 1 points are inserted at once by each of the cores. This second level of insertion has
the effect of reducing the number of OpenMP barriers by a factor M2 and to better balance the load by averaging
the computations over M2 point insertions. This two-level approach has however the disadvantage of reducing data
locality on each thread. Moreover, M2 cannot be increased above a certain level (typically M2 ≤ 8). Nevertheless, the
two-level multithreaded Delaunay kernel allows to speed up the triangulation by a factor of 13.2 on 32 cores, leading
to the tetrahedralization of about 1 million points per second. On a 32 core Intel Xeon E5-4610 v2 @ 2.30GHz with
with 128 GB of memory, the two-level multithreaded Delaunay kernel with M2 = 8 generates more than a billion
tetrahedra (150 million points) in 142.8 seconds of wall clock time.

2. The Delaunay Kernel

In what follows, a triangle is the generic term for a triangle in 2D or a tetrahedron in 3D. A triangulation T (S) of
S is a set of non overlapping triangles that exactly covers the convex hull Ω(S) with all points of S being among the
vertices of the triangulation. The Delaunay triangulation DT(S) is such that the empty circumcircle of any triangle
in DT(S) is empty, i.e., it contains no point of S . Delaunay triangulations are popular in the meshing community
because fast algorithms exist that allow to generate DT(S) in O(n log n) complexity.

The fastest algorithms that allow to build DT(S) are based on the Delaunay kernel [10]. Let DTk be the De-
launay triangulation of a point set S k = {p1, . . . , pk} ⊂ R

d. The Delaunay kernel is a procedure that allow the
incremental insertion of a given point pk+1 ∈ Ω(S k) into DTk and to build the Delaunay triangulation DTk+1 of
S k+1 = {p1, . . . , pk, pk+1}. The Delaunay kernel can be written in the following abstract manner:

DTk+1 = DTk − C(DTk, pk+1) + B(DTk, pk+1), (1)

J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000 3

where the Delaunay cavity C(DTk, pk+1) is the set of all triangles whose circumcircles contain the new point pk+1 (see
Figure 1; the triangles of the cavity cannot belong to DTk+1) and the Delaunay ball B(DTk, pk+1) is a set of triangles
that fill the polyhedral hole that has been left empty while removing the Delaunay cavity C(DTk, pk+1) from DTk.

The most important building block in any implementation of the Delaunay kernel is the computation of the simply
connected Delaunay cavity C(DTk, pk+1) [14]. One seed triangle t should be found that has its circumcircle containing
pk+1. Then, computing the Delaunay cavity can be done locally using a depth-first search technique.

There are essentially two ways to compute the seed triangle t efficiently. The history of all triangles may be
maintained and a search is made into the history dag to insert a new point [2]. This solution leads to logarithmic
complexity for finding the seeding triangle t. It also requires some memory overhead because all triangles of all
stages have to be maintained. A more straightforward algorithm consists in doing a “walk” into the triangulation:
starting from any triangle τ, finding the next triangle in the path to t consists in choosing one of the three neighbors τ j

of τ in such a way that pk+1 is on the other side of τ of the edge that is common to τ and τ j. This walk can be shown
to always terminate using Edelsbrunner’s acyclic theorem [9]. Figure 2 presents the construction of a Delaunay cavity
using this approach. The walking path that allows to find the seed t is depicted with a thick black line. The Delaunay
cavity of point pk+1 is shown in red. In our implementation, we choose τ as the first element of the Delaunay ball
B(DTk−1, pk). We will see later on why this is actually a good idea. Listing 1 shows a typical implementation of the
Delaunay kernel.

The top half of Table 1 presents the average number of walking steps Nwalk required to find an initial triangle
of the Delaunay cavity in terms of the number of points to insert n, when the points are inserted randomly. In 2D
Nwalk is of the order O(n1/2) as expected. It is interesting to see that the CPU time for computing the triangulation is
asymptotically lower in 3D because Nwalk is of the order O(n1/3).

This behaviour can be improved dramatically by sorting the points in such a way that two successive points in
the set are close to each other geometrically. On Figure 3, a set of 105 points are sorted using a Hilbert curve (two
successive points in the sorted list are linked with a solid line). In the context of the Delaunay kernel, this kind of data
locality can decrease the number of local searches Nwalk that are required to find the next invalid triangle: one can
use as a starting triangle t for point pk+1 one of the triangles of cavity C(DTk−1, pk). In practice, points are initially
separated in groups of increasing sizes. Then, points are sorted within each group using a Hilbert space-filling curve.
This has the advantage to produce smaller Delaunay cavities during the incremental insertion process than a simple
Hilbert sort. Adding some randomness in the insertion process allows to reduce the average cavity size. Here, we

DTk

pk+1

C (DTk , pk+1) B(DTk , pk+1)

pk+1

DTk+1

Fig. 1. Delaunay triangulation DTk (left), Delaunay cavity Cp(DTk , pk+1) (center) and DTk+1 = DTk − C(DTk , pk+1) + B(DTk , pk+1) (right).

4 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000

τ

t pk+1

pk

Fig. 2. Delaunay cavity C(DTk , pk+1) in red and Delaunay cavity C(DTk−1, pk) in yellow. A seed t for building C(DTk , pk+1) is found by starting
from an arbitrary triangle of C(DTk−1, pk) and walking through the triangulation. Here, 32 walking steps were necessary to find t.

�
void d e l a u n a y S e r i a l (v e c t o r <Vertex > &v , v e c t o r <T e t r a h e d r o n > &t)
{

s o r t P o i n t s (v) ;
T e t r a h e d r o n t a u = T [0] ;

f o r (i n t k = 0 ; k < v . s i z e () ; k++) {
T e t r a h e d r o n t = walk (tau , v [k]) ;
v e c t o r <T e t r a h e d r o n > c a v i t y = d e l a u n a y C a v i t y (t , v [k]) ;
v e c t o r <T e t r a h e d r o n > b a l l = d e l a u n a y B a l l (c a v i t y , v [k]) ;
t a u = b a l l [0] ;

}

}
� �
Listing 1. Serial Delaunay procedure

n 103 104 105 106 103 104 105 106

2D (random insertion) 3D (random insertion)
Nwalk 23 73 230 727 17 38 85 186
t(sec) 3.6 10−3 9.1 10−2 3.98 187 1.2 10−2 1.8 10−1 3.42 73

2D (Hilbert curve) 3D (Hilbert curve)
Nwalk 2.3 2.4 2.5 2.5 2.9 3.0 3.1 3.1
t(sec) 2 10−3 1.5 10−2 1.5 10−1 1.47 9.0 10−3 7.5 10−2 7.8 10−1 7.81

Table 1. Results of the Delaunay Triangulation algorithm applied to a set of random points uniformly distributed in [0, 1]d . The table compares
timings and average number of local searches in the case where points are inserted in a random fashion and in the case where points are inserted
along a Hilbert curve.

use the Biased Randomized Insertion Order (BRIO) approach [1] that allows to recover enough randomness in the
process.

The bottom half of Table 1 presents the average number of walking steps Nwalk as well as timings in the case where
points are inserted along a Hilbert curve. The number of walks Nwalk is now almost independent of n and both 2D
and 3D point insertion algorithms have an overall linear complexity. The difference between 2D and 3D timings is
essentially due to the size of Delaunay cavities: 4 on average in 2D and above 20 in 3D. Assuming that geometrical
predicates are slightly more expensive to compute in 3D, a factor of about 6 between the 2D and 3D timings is

J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000 5

Fig. 3. Hilbert sort of a sets of 105 random points.

to be expected. Note that the Hilbert sorting has a O(n log n) complexity: the overall complexity of the Delaunay
triangulation is O(n log n) as well. Yet, this is an asymptotic bound: with 1 million points, the time required to sort
the points is still typically 100 times lower than the time for generating the mesh.

Before proceeding to the description of the proposed fine-grained parallelization of the Delaunay kernel, let us
note that its serial performance is comparable to state of the art algorithms. For the same point set and for the same
machine (same compiler and compiler options), Tetgen 1.5 [17] takes 7.7 seconds to tetrahedralize the set of points
while ours takes 7.81 sec (a difference of less than 2%). The source code of both the 2D and the 3D version of the
algorithm is available on Gmsh’s website www.gmsh.info.

3. A Multithreaded Delaunay Kernel

Assume M computational threads that aim at inserting M points in the triangulation at the same time. At the end,
each thread is going to insert n

M points and our hope is of course to obtain a speedup close to M. The situation is of
course not that simple: two points pi and p j can only be inserted at the same time in DTk if their respective Delaunay
cavities C(DTk, pi) and C(DTk, p j) do not overlap, i.e., if they do not have triangles in common:

C(DTk, pi) ∩ C(DTk, p j) = ∅.

A non-overlapping situation is more likely to happen if points pi and p j are not close geometrically. For that purpose,
we split the Hilbert curve into M equal parts and assign each part to one thread. Threads process their assigned points
in order. A first chunk of points that correspond to about 20 × M points is inserted in a serial fashion at first [3]. This
allows to avoid inevitable cavities overlap in the first stages of the algorithm. Then, the rest of the points is inserted in
parallel. Figure 4 shows different stages of the algorithm. Delaunay cavities are far apart most of the time thanks to
the property of the Hilbert curve.

The multithreaded Delaunay kernel can be written in the following abstract manner:

DTk+1 = DTk +

M−1∑
i=0

[
−C(DTk, pk+i n

M
) + B(DTk, pk+i n

M
)
]
. (2)

We have implemented the multithreaded Delaunay kernel using OpenMP [7]. Two OpenMP barriers were used
at each iteration k. A first barrier is used after the computation of the M cavities: every thread i has to complete its

www.gmsh.info

6 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000�
void d e l a u n a y P a r a l l e l (v e c t o r <Vertex > &v , v e c t o r <T e t r a h e d r o n > &t , c o n s t i n t M)
{

s o r t P o i n t s (v , M) ;
T e t r a h e d r o n t a u [M] ;
c o n s t i n t n = v . s i z e () ;
f o r (i n t i = 0 ; i < M; i ++) t a u [i] = T [0] ;

#pragma omp p a r a l l e l n u m t h r e a d s (M)
{

i n t i = o m p g e t t h r e a d n u m () ;
f o r (i n t k = 0 ; k < n /M; k++) {

i n t i n d e x = k + i ∗ n / M;
T e t r a h e d r o n t = walk (t a u [i] , v [i n d e x]) ;
v e c t o r <T e t r a h e d r o n > c a v i t y = d e l a u n a y C a v i t y (t , v [i n d e x]) ;

#pragma omp b a r r i e r
i f (noOver lap (c a v i t y)) {

v e c t o r <T e t r a h e d r o n > b a l l = d e l a u n a y B a l l (c a v i t y , v [i n d e x]) ;
t a u [i] = b a l l [0] ;

}

#pragma omp b a r r i e r
}

} / / end o f omp pragma
}
� �

Listing 2. Parallel Delaunay procedure

cavity C(DTk, pk+i n
M

) at iteration k in order to be able to verify that the cavity does not overlap other cavities. When
several cavities overlap, only the point corresponding to the smallest thread number is processed. The other points
are delayed to the next iteration. A second barrier is used after the construction of B(DTk, pk+i n

M
): every thread has to

finish computing the Delaunay kernel in order to start iteration k + 1 with a valid mesh. Listing 2 presents a simplified
version of the code that has been used to do the computations. Even though this version is simplified, it has the main
features of the actual code that is available in www.gmsh.info. It is important to note that Listings 1 and 2 are very
similar: the multithreaded version of the Delaunay kernel that is proposed here only implies moderate modifications
of an existing serial Delaunay insertion procedure.

Three potential threats can definitively harm the parallel speedup:

1. Load balancing: at stage k, the size of the M Delaunay cavities C(DTk, pk+i n
M

) may vary from one thread to
another, leading to some load imbalance. Threads with small cavities will wait at the barrier for the thread that
has the largest cavity.

2. Overlaps: it should be verified that cavity overlaps are rare events: each overlap adds one iteration in the
insertion process.

3. Overheads: The OpenMP parallelization adds its own overhead: two barriers are used per iteration.

Let us investigate how those three threats may impact the scaling of the multithreaded Delaunay kernel.

3.1. Load Balancing

Figure 5 shows the distribution of sizes of 3D Delaunay cavities for a set of on million points that are uniformly
distributed on the unit cube. The average size of Delaunay cavities is 21.2. Note that the way points are distributed
does not change the cavity size distribution significantly: normal and Kuzmin point distribution have been tried with
no spectacular change in the computations.

www.gmsh.info

J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000 7

Fig. 4. Different stages of the multithreaded Delaunay insertion (M = 4). Delaunay cavities at the four different stages are colored w.r.t. their
thread number.

The workload for thread i at a given step k is proportional to the cavity size dim(C(DTk, pk+i n
M

)). The maximal
theoretical speedup of the parallel algorithm is

S max =

∑n/M
k=1
∑M−1

i=0 dim(C(DTk, pk+i n
M

))∑n/M
k=1 maxM−1

i=0 dim(C(DTk, pk+i n
M

))
,

which represents the total work done by all the threads divided by the maximal work done at every iteration k.
Theoretical speedups S max are reported in the top part of Table 2. The discrepancy between cavity sizes clearly has an
impact on the theoretical speedup, and the parallel efficiency S max/M decreases with the number of threads.

3.2. Overheads

The rest of Table 2 presents computational results, performed a 32 core Intel(R) Xeon(R) CPU E5-4610 v2 @
2.30GHz with with 128 GB of memory. Microbenchmarks in [4] provide measurements of overheads incurred by
OpenMP 3.0 constructs. The overhead τbarrier of introducing one OpenMP barrier grows from 0.2 microseconds for 2
threads to 10 microseconds for 32 threads with a very irregular pattern in between (see Table 2). The total time spent

8 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000

0 10 20 30 40 50 60
0

1

2

3

4

5

6
x 104

Cavity Sizes

Fr
eq

ue
nc

y

Uniform distribution
Kuzmin distribution

Student Version of MATLAB

Fig. 5. Size of 3D Delaunay cavities for two different distributions (uniform and Kuzmin) of one million points.

M 1 2 4 8 16 32
S max – 1.66 2.86 5.03 8.69 15.7

S max/M – 0.83 0.71 0.62 0.54 0.49
τbarrier (µsec) – 0.2 0.4 2.0 3.5 10

tbarrier (sec) – 0.2 0.2 0.5 0.43 0.62
Nmiss – 8 15 42 184 392

S – 1.63 2.76 4.60 6.62 9.33
S/M – 0.81 0.69 0.57 0.41 0.29

t (sec) 11.2 6.84 4.05 2.43 1.69 1.20

Table 2. Scaling results for the multithreaded Delaunay kernel for triangulating 106 points (uniform distribution). M is the number of cores, S max is
the maximal speedup that can be attained, τbarrier is the overhead per OpenMP Barrier, tbarrier is the total time spent at barriers, Nmiss is the number
of times a point cannot be inserted, S is the actual speedup and t is the wall clock time. All computations performed on a 32 core Intel(R) Xeon(R)
CPU E5-4610 v2 @ 2.30GHz with with 128 GB of memory.

at barriers is computed as

tbarrier =
2 n τbarrier

M
.

This overhead is not decreasing with the number of threads which may cause serious drops in parallel efficiency.

3.3. Overlaps

We have reported in Table 2 the number of times Nmiss one point cannot be inserted because its Delaunay cavity
overlaps the cavity of another point that is inserted by another thread. This number is negligible compared to n = 106.
On M = 32 cores, Nmiss = 392 points were delayed which only represents 0.39% of the total. For a larger number of
points n = 107, the number of overlaps is decreasing: Nmiss = 270.

J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000 9�
void d e l a u n a y P a r a l l e l 2 (v e c t o r <Vertex > &v , v e c t o r <T e t r a h e d r o n >& t ,

c o n s t i n t M, c o n s t i n t M2)
{

s o r t P o i n t s (v , M, M2) ;
T e t r a h e d r o n t a u [M] [M2] ;
c o n s t i n t n = v . s i z e () ;
f o r (i n t i = 0 ; i < M; i ++)

f o r (i n t j = 0 ; j < M2; j ++) t a u [i] [j] = T [0] ;
#pragma omp p a r a l l e l n u m t h r e a d s (M)

{

i n t i = o m p g e t t h r e a d n u m () ;
f o r (i n t k = 0 ; k < n / M / M2; k++) {

v e c t o r <T e t r a h e d r o n > c a v i t y [M2] ;
f o r (i n t j = 0 ; j < M2; j ++) {

i n t i n d e x = k + i ∗ n / (M ∗ M2) + j ∗ n / M2;
T e t r a h e d r o n t = walk (t a u [i] [j] , v [i n d e x]) ;
c a v i t y [j] = d e l a u n a y C a v i t y (t , v [i n d e x]) ;

}

#pragma omp b a r r i e r
f o r (i n t j = 0 ; j < M2; j ++) {

i f (noOver lap (c a v i t y [j])) {
v e c t o r <T e t r a h e d r o n > b a l l = d e l a u n a y B a l l (c a v i t y [j] , v [i n d e x]) ;
t a u [i] [j] = b a l l [0] ;

}

}

#pragma omp b a r r i e r
}

} / / end o f omp pragma
}
� �

Listing 3. Parallel Delaunay procedure

3.4. Results

The last three rows in Table 2 show the actual speedups S and the computational efficiency S/M for computing
the Delaunay triangulation of one million points, as well as the overall wall clock time t. These results reflect the
two problems that have been described above. On 32 cores, a theoretical speedup of S max = 14.9 is expected but a
true speedup of S = 9.33 is attained. The difference is caused by the overhead tbarrier = 0.62 sec caused by OpenMP
barriers. Without this overhead, wall clock time would reduce to 1.20 − 0.62 = 0.58 seconds, which is close to the
serial wall clock time (11.2 seconds) divided by the theoretical maximum speedup (15.7). Even though the speedup
S is always increasing with the number of threads M, barrier overheads and cavity size discrepancies clearly tend to
become problematic when the number of threads is large. In the following sections, those two issues are addressed by
using a two-level approach.

4. A Two-Level Multithreaded Delaunay Kernel

A two-level strategy is a partial solution to both issues of cavity size discrepancy and barrier overheads. At iteration
k, we assume that each thread i inserts M2 points at a time in a serial manner: M2 Delaunay cavities are computed
by thread i which leads to a Delaunay kernel that inserts M × M2 points at each iteration k. Figure 6 shows how M2
affects the distribution of sizes of 3D Delaunay cavities for a set of on million points that are uniformly distributed
on the unit cube. The distribution gets sharper around the average cavity size, which is definitively advantageous for
scalability.

10 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

Cavity Sizes

Fr
eq

ue
nc

y

M2 = 1
M2 = 2
M2 = 4
M2 = 8
M2 = 16

Student Version of MATLAB

Fig. 6. Average size of 3D Delaunay cavities for M2 = 1 to M2 = 16.

The two-level multithreaded Delaunay kernel can be written in the following abstract manner:

DTk+1 = DTk +

M−1∑
i=0

M2−1∑
j=0

[
−C(DTk, pk+i n

MM2
+ j n

M2
) + B(DTk, pk+i n

MM2
+ j n

M2
)
]
. (3)

This procedure generates exactly the same insertion sequence as the multithreaded Delaunay kernel with M × M2
threads.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of threads M

Sp
ee

du
p

Smax (M2=1)
Smax (M2=2)
Smax (M2=4)
Smax (M2=8)
S (M2=1)
S (M2=2)
S (M2=4)
S (M2=8)

Student Version of MATLAB

5 10 15 20 25 30

5

10

15

20

25

30

Number of threads M

Sp
ee

du
p

Smax (M2=1)
Smax (M2=2)
Smax (M2=4)
Smax (M2=8)
S (M2=1)
S (M2=2)
S (M2=4)
S (M2=8)

Student Version of MATLAB

Fig. 7. Strong scaling of the two-level multithreaded 3D Delaunay kernel. Left figure is a zoom (1 ≤ M ≤ 8) of the right Figure (1 ≤ M ≤ 32).

Listing 3 presents a simplified version of the code that has been used to do the computations.
Figure 7 reports strong scaling results for the two-scale multithreaded Delaunay kernel for M2 = 1, 2, 4, 8. Maximal

theoretical speedups S max are reported as well as true speedups S . The computer that has been used in is the same

J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000 11

4 socket node with a 8-cores processor on each socket for a total of 32 cores. The 8 first threads were executed
within the scope of one single processor, allowing to maintain the nearness of threads and their data. Figure 7 shows
that speedups increase with M2 as predicted, and that for M ≤ 8 the actual speedup of our procedure is close to the
maximal possible one. A speedup of S = 5.8 is attained for M = 8 and M2 = 8, which is slightly better that the ones
observed in [3] and which is close to S max = 6.7. For a higher number of cores, speedups are moving away from their
maximal values even though we made sure that thread affinity was maintained by allocating vertices and tetrahedra
on the local node [15].

Yet, the good news is that speedups always increase with M: a triangulation of one million points in 3D was
performed in 0.89 seconds of wall clock time on 32 cores for a total speedup of S = 13.2. This is one order of
magnitude faster than the fastest procedure available.

Figure 8 gives scaling results for different sizes for the point set: it starts from n = 104 and increases that number
to n = 1.5 108 points, i.e., to about 109 tetrahedra. With M > 8 speedups are even more important for very large sets
of points. This is essentially due to the fact that data locality is better on 32 cores than using one single node for such
a large amount of points.

104 105 106 107 108

2

4

6

8

10

12

14

16

18

20

Number of Points N

Sp
ee

du
p

M=2
M=4
M=8
M=16
M=32

Student Version of MATLAB

Fig. 8. Scaling of the two-level multithreaded Delaunay kernel with respect to N.

In our implementation, one tetrahedron requires 72 bytes of memory. Less than 100 GigaBytes of memory were
necessary for 109 tetrahedra and it took 142.8 seconds of wall clock time for generating such a mesh on M = 32 cores
with M2 = 8. This corresponds to a rate of about 7 million of tetrahedra per second.

5. Conclusions

This paper presents some preliminary results on shared-memory parallel mesh generation. The central piece of
the mesh generator, its Delaunay kernel, has been successfully parallelized using very simple OpenMP constructs.
The parallel 3D delaunay procedure is available at www.gmsh.info. It has about 500 lines of code and only uses 3
OpenMP constructs.

This approach is presently extended to Graphical Processor Units. GPUs are the ultimate multicore platforms, with
thousand of computing cores that provide massive throughputs. The two-level approach that is presented here actually
fits very well with the two-level parallelism that is used in GPUs (blocks/threads).

The next step towards parallel mesh generation is to use this approach for Delaunay refinement.

www.gmsh.info

12 J.-F. Remacle and C. Geuzaine / Procedia Engineering 00 (2015) 000–000

References

[1] N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio. In Proceedings of the nineteenth annual symposium on Computational
geometry, pages 211–219. ACM, 2003.

[2] C. B. Barber and H. Huhdanpaa. Qhull, softwarepackage, 1995.
[3] V. H. Batista, D. L. Millman, S. Pion, and J. Singler. Parallel geometric algorithms for multi-core computers. In Proceedings of the twenty-fifth

annual symposium on Computational geometry, pages 217–226. ACM, 2009.
[4] J. M. Bull, F. Reid, and N. McDonnell. A microbenchmark suite for openmp tasks. In OpenMP in a Heterogeneous World, pages 271–274.

Springer, 2012.
[5] N. Chrisochoides and D. Nave. Parallel delaunay mesh generation kernel. International Journal for Numerical Methods in Engineering,

58(2):161–176, 2003.
[6] N. P. Chrisochoides et al. A survey of parallel mesh generation methods. Brown University, Providence RI-2005, 2005.
[7] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming. Computational Science & Engineering, IEEE,

5(1):46–55, 1998.
[8] H. L. De Cougny, M. S. Shephard, and C. Ozturan. Parallel three-dimensional mesh generation. Computing Systems in Engineering, 5(4):311–

323, 1994.
[9] H. Edelsbrunner. Geometry and topology for mesh generation. Cambridge University Press, 2001.

[10] P. J. Frey and P. L. George. Mesh generation: application to finite elements. ISTE London, 2008.
[11] P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with specified boundary. Computer methods in applied mechanics and

engineering, 92(3):269–288, 1991.
[12] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities.

International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.
[13] S. Hornus and J.-D. Boissonnat. An efficient implementation of delaunay triangulations in medium dimensions. 2008.
[14] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink. Streaming computation of delaunay triangulations. In ACM Transactions on Graphics

(TOG), volume 25, pages 1049–1056. ACM, 2006.
[15] A. Kleen. A numa api for linux. Novel Inc, 2005.
[16] R. Löhner, J. Camberos, and M. Merriam. Parallel unstructured grid generation. Computer Methods in Applied Mechanics and Engineering,

95(3):343–357, 1992.
[17] H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS), 41(2):11, 2015.

	Introduction
	The Delaunay Kernel
	A Multithreaded Delaunay Kernel
	Load Balancing
	Overheads
	Overlaps
	Results

	A Two-Level Multithreaded Delaunay Kernel
	Conclusions

